skip to Main Content

Demonstrations of quantum advantage for certain sampling problems has generated considerable excitement for quantum computing and has further spurred the development of circuit-model quantum computers, which represent quantum programs as a sequence of quantum gates acting on a finite number of qubits. Amongst this excitement, analog quantum computation has become less prominent, with the expectation that circuit-model quantum computers will eventually be sufficient for emulating analog quantum computation and thus rendering analog quantum computation obsolete. In this work we explore the basic requirements for emulating a specific analog quantum computation in the circuit model: the preparation of a biased superposition of degenerate ground states of an Ising Hamiltonian using an adiabatic evolution. We show that the overhead of emulation is substantial even for this simple problem. This supports using analog quantum computation for solving time-dependent Hamiltonian dynamics in the short and mid-term, assuming analog errors can be made low enough and coherence times long enough to solve problems of practical interest.

Read the whole paper on arXiv

Back To Top